X-Git-Url: https://git.openssl.org/?a=blobdiff_plain;ds=sidebyside;f=crypto%2Fasn1%2Fa_int.c;h=217650a036c98b3452f3cb29f594bcd8b6c59080;hb=e15c95ce8596bcc2a5f5e163ff78ccf469dbf994;hp=56a72fb75965f2d0cc40adbf5c43170cc71994cd;hpb=b39fc560612984e65ec30d7f37487303bf514fb3;p=openssl.git diff --git a/crypto/asn1/a_int.c b/crypto/asn1/a_int.c index 56a72fb759..217650a036 100644 --- a/crypto/asn1/a_int.c +++ b/crypto/asn1/a_int.c @@ -1,63 +1,16 @@ -/* crypto/asn1/a_int.c */ -/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) - * All rights reserved. - * - * This package is an SSL implementation written - * by Eric Young (eay@cryptsoft.com). - * The implementation was written so as to conform with Netscapes SSL. - * - * This library is free for commercial and non-commercial use as long as - * the following conditions are aheared to. The following conditions - * apply to all code found in this distribution, be it the RC4, RSA, - * lhash, DES, etc., code; not just the SSL code. The SSL documentation - * included with this distribution is covered by the same copyright terms - * except that the holder is Tim Hudson (tjh@cryptsoft.com). - * - * Copyright remains Eric Young's, and as such any Copyright notices in - * the code are not to be removed. - * If this package is used in a product, Eric Young should be given attribution - * as the author of the parts of the library used. - * This can be in the form of a textual message at program startup or - * in documentation (online or textual) provided with the package. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * 3. All advertising materials mentioning features or use of this software - * must display the following acknowledgement: - * "This product includes cryptographic software written by - * Eric Young (eay@cryptsoft.com)" - * The word 'cryptographic' can be left out if the rouines from the library - * being used are not cryptographic related :-). - * 4. If you include any Windows specific code (or a derivative thereof) from - * the apps directory (application code) you must include an acknowledgement: - * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" - * - * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND - * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE - * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL - * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS - * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT - * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY - * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF - * SUCH DAMAGE. +/* + * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. * - * The licence and distribution terms for any publically available version or - * derivative of this code cannot be changed. i.e. this code cannot simply be - * copied and put under another distribution licence - * [including the GNU Public Licence.] + * Licensed under the OpenSSL license (the "License"). You may not use + * this file except in compliance with the License. You can obtain a copy + * in the file LICENSE in the source distribution or at + * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" +#include "internal/numbers.h" +#include #include #include #include "asn1_locl.h" @@ -88,10 +41,11 @@ int ASN1_INTEGER_cmp(const ASN1_INTEGER *x, const ASN1_INTEGER *y) } /*- - * This converts an ASN1 INTEGER into its content encoding. + * This converts a big endian buffer and sign into its content encoding. + * This is used for INTEGER and ENUMERATED types. * The internal representation is an ASN1_STRING whose data is a big endian * representation of the value, ignoring the sign. The sign is determined by - * the type: V_ASN1_INTEGER for positive and V_ASN1_NEG_INTEGER for negative. + * the type: if type & V_ASN1_NEG is true it is negative, otherwise positive. * * Positive integers are no problem: they are almost the same as the DER * encoding, except if the first byte is >= 0x80 we need to add a zero pad. @@ -112,164 +66,316 @@ int ASN1_INTEGER_cmp(const ASN1_INTEGER *x, const ASN1_INTEGER *y) * followed by optional zeros isn't padded. */ -int i2c_ASN1_INTEGER(ASN1_INTEGER *a, unsigned char **pp) +/* + * If |pad| is zero, the operation is effectively reduced to memcpy, + * and if |pad| is 0xff, then it performs two's complement, ~dst + 1. + * Note that in latter case sequence of zeros yields itself, and so + * does 0x80 followed by any number of zeros. These properties are + * used elsewhere below... + */ +static void twos_complement(unsigned char *dst, const unsigned char *src, + size_t len, unsigned char pad) { - int pad = 0, ret, i, neg; - unsigned char *p, *n, pb = 0; + unsigned int carry = pad & 1; + + /* Begin at the end of the encoding */ + dst += len; + src += len; + /* two's complement value: ~value + 1 */ + while (len-- != 0) { + *(--dst) = (unsigned char)(carry += *(--src) ^ pad); + carry >>= 8; + } +} - if (a == NULL) - return (0); - neg = a->type & V_ASN1_NEG; - if (a->length == 0) - ret = 1; - else { - ret = a->length; - i = a->data[0]; - if (ret == 1 && i == 0) - neg = 0; +static size_t i2c_ibuf(const unsigned char *b, size_t blen, int neg, + unsigned char **pp) +{ + unsigned int pad = 0; + size_t ret, i; + unsigned char *p, pb = 0; + + if (b != NULL && blen) { + ret = blen; + i = b[0]; if (!neg && (i > 127)) { pad = 1; pb = 0; } else if (neg) { + pb = 0xFF; if (i > 128) { pad = 1; - pb = 0xFF; } else if (i == 128) { /* - * Special case: if any other bytes non zero we pad: - * otherwise we don't. + * Special case [of minimal negative for given length]: + * if any other bytes non zero we pad, otherwise we don't. */ - for (i = 1; i < a->length; i++) - if (a->data[i]) { - pad = 1; - pb = 0xFF; - break; - } + for (pad = 0, i = 1; i < blen; i++) + pad |= b[i]; + pb = pad != 0 ? 0xffU : 0; + pad = pb & 1; } } ret += pad; + } else { + ret = 1; + blen = 0; /* reduce '(b == NULL || blen == 0)' to '(blen == 0)' */ } - if (pp == NULL) - return (ret); - p = *pp; - if (pad) - *(p++) = pb; - if (a->length == 0) - *(p++) = 0; - else if (!neg) - memcpy(p, a->data, (unsigned int)a->length); - else { - /* Begin at the end of the encoding */ - n = a->data + a->length - 1; - p += a->length - 1; - i = a->length; - /* Copy zeros to destination as long as source is zero */ - while (!*n && i > 1) { - *(p--) = 0; - n--; - i--; + if (pp == NULL || (p = *pp) == NULL) + return ret; + + /* + * This magically handles all corner cases, such as '(b == NULL || + * blen == 0)', non-negative value, "negative" zero, 0x80 followed + * by any number of zeros... + */ + *p = pb; + p += pad; /* yes, p[0] can be written twice, but it's little + * price to pay for eliminated branches */ + twos_complement(p, b, blen, pb); + + *pp += ret; + return ret; +} + +/* + * convert content octets into a big endian buffer. Returns the length + * of buffer or 0 on error: for malformed INTEGER. If output buffer is + * NULL just return length. + */ + +static size_t c2i_ibuf(unsigned char *b, int *pneg, + const unsigned char *p, size_t plen) +{ + int neg, pad; + /* Zero content length is illegal */ + if (plen == 0) { + ASN1err(ASN1_F_C2I_IBUF, ASN1_R_ILLEGAL_ZERO_CONTENT); + return 0; + } + neg = p[0] & 0x80; + if (pneg) + *pneg = neg; + /* Handle common case where length is 1 octet separately */ + if (plen == 1) { + if (b != NULL) { + if (neg) + b[0] = (p[0] ^ 0xFF) + 1; + else + b[0] = p[0]; } - /* Complement and increment next octet */ - *(p--) = ((*(n--)) ^ 0xff) + 1; - i--; - /* Complement any octets left */ - for (; i > 0; i--) - *(p--) = *(n--) ^ 0xff; + return 1; } - *pp += ret; - return (ret); + pad = 0; + if (p[0] == 0) { + pad = 1; + } else if (p[0] == 0xFF) { + size_t i; + + /* + * Special case [of "one less minimal negative" for given length]: + * if any other bytes non zero it was padded, otherwise not. + */ + for (pad = 0, i = 1; i < plen; i++) + pad |= p[i]; + pad = pad != 0 ? 1 : 0; + } + /* reject illegal padding: first two octets MSB can't match */ + if (pad && (neg == (p[1] & 0x80))) { + ASN1err(ASN1_F_C2I_IBUF, ASN1_R_ILLEGAL_PADDING); + return 0; + } + + /* skip over pad */ + p += pad; + plen -= pad; + + if (b != NULL) + twos_complement(b, p, plen, neg ? 0xffU : 0); + + return plen; +} + +int i2c_ASN1_INTEGER(ASN1_INTEGER *a, unsigned char **pp) +{ + return i2c_ibuf(a->data, a->length, a->type & V_ASN1_NEG, pp); +} + +/* Convert big endian buffer into uint64_t, return 0 on error */ +static int asn1_get_uint64(uint64_t *pr, const unsigned char *b, size_t blen) +{ + size_t i; + uint64_t r; + + if (blen > sizeof(*pr)) { + ASN1err(ASN1_F_ASN1_GET_UINT64, ASN1_R_TOO_LARGE); + return 0; + } + if (b == NULL) + return 0; + for (r = 0, i = 0; i < blen; i++) { + r <<= 8; + r |= b[i]; + } + *pr = r; + return 1; } -/* Convert just ASN1 INTEGER content octets to ASN1_INTEGER structure */ +/* + * Write uint64_t to big endian buffer and return offset to first + * written octet. In other words it returns offset in range from 0 + * to 7, with 0 denoting 8 written octets and 7 - one. + */ +static size_t asn1_put_uint64(unsigned char b[sizeof(uint64_t)], uint64_t r) +{ + size_t off = sizeof(uint64_t); + + do { + b[--off] = (unsigned char)r; + } while (r >>= 8); + + return off; +} + +/* + * Absolute value of INT64_MIN: we can't just use -INT64_MIN as gcc produces + * overflow warnings. + */ +#define ABS_INT64_MIN ((uint64_t)INT64_MAX + (-(INT64_MIN + INT64_MAX))) + +/* signed version of asn1_get_uint64 */ +static int asn1_get_int64(int64_t *pr, const unsigned char *b, size_t blen, + int neg) +{ + uint64_t r; + if (asn1_get_uint64(&r, b, blen) == 0) + return 0; + if (neg) { + if (r <= INT64_MAX) { + /* Most significant bit is guaranteed to be clear, negation + * is guaranteed to be meaningful in platform-neutral sense. */ + *pr = -(int64_t)r; + } else if (r == ABS_INT64_MIN) { + /* This never happens if INT64_MAX == ABS_INT64_MIN, e.g. + * on ones'-complement system. */ + *pr = (int64_t)(0 - r); + } else { + ASN1err(ASN1_F_ASN1_GET_INT64, ASN1_R_TOO_SMALL); + return 0; + } + } else { + if (r <= INT64_MAX) { + *pr = (int64_t)r; + } else { + ASN1err(ASN1_F_ASN1_GET_INT64, ASN1_R_TOO_LARGE); + return 0; + } + } + return 1; +} +/* Convert ASN1 INTEGER content octets to ASN1_INTEGER structure */ ASN1_INTEGER *c2i_ASN1_INTEGER(ASN1_INTEGER **a, const unsigned char **pp, long len) { ASN1_INTEGER *ret = NULL; - const unsigned char *p, *pend; - unsigned char *to, *s; - int i; + size_t r; + int neg; + + r = c2i_ibuf(NULL, NULL, *pp, len); + + if (r == 0) + return NULL; if ((a == NULL) || ((*a) == NULL)) { - if ((ret = ASN1_INTEGER_new()) == NULL) - return (NULL); + ret = ASN1_INTEGER_new(); + if (ret == NULL) + return NULL; ret->type = V_ASN1_INTEGER; } else - ret = (*a); - - p = *pp; - pend = p + len; + ret = *a; - /* - * We must OPENSSL_malloc stuff, even for 0 bytes otherwise it signifies - * a missing NULL parameter. - */ - s = OPENSSL_malloc((int)len + 1); - if (s == NULL) { - i = ERR_R_MALLOC_FAILURE; + if (ASN1_STRING_set(ret, NULL, r) == 0) goto err; - } - to = s; - if (!len) { - /* - * Strictly speaking this is an illegal INTEGER but we tolerate it. - */ - ret->type = V_ASN1_INTEGER; - } else if (*p & 0x80) { /* a negative number */ - ret->type = V_ASN1_NEG_INTEGER; - if ((*p == 0xff) && (len != 1)) { - p++; - len--; - } - i = len; - p += i - 1; - to += i - 1; - while ((!*p) && i) { - *(to--) = 0; - i--; - p--; - } - /* - * Special case: if all zeros then the number will be of the form FF - * followed by n zero bytes: this corresponds to 1 followed by n zero - * bytes. We've already written n zeros so we just append an extra - * one and set the first byte to a 1. This is treated separately - * because it is the only case where the number of bytes is larger - * than len. - */ - if (!i) { - *s = 1; - s[len] = 0; - len++; - } else { - *(to--) = (*(p--) ^ 0xff) + 1; - i--; - for (; i > 0; i--) - *(to--) = *(p--) ^ 0xff; - } - } else { - ret->type = V_ASN1_INTEGER; - if ((*p == 0) && (len != 1)) { - p++; - len--; - } - memcpy(s, p, (int)len); - } - OPENSSL_free(ret->data); - ret->data = s; - ret->length = (int)len; + c2i_ibuf(ret->data, &neg, *pp, len); + + if (neg) + ret->type |= V_ASN1_NEG; + + *pp += len; if (a != NULL) (*a) = ret; - *pp = pend; - return (ret); + return ret; err: - ASN1err(ASN1_F_C2I_ASN1_INTEGER, i); + ASN1err(ASN1_F_C2I_ASN1_INTEGER, ERR_R_MALLOC_FAILURE); if ((a == NULL) || (*a != ret)) ASN1_INTEGER_free(ret); - return (NULL); + return NULL; +} + +static int asn1_string_get_int64(int64_t *pr, const ASN1_STRING *a, int itype) +{ + if (a == NULL) { + ASN1err(ASN1_F_ASN1_STRING_GET_INT64, ERR_R_PASSED_NULL_PARAMETER); + return 0; + } + if ((a->type & ~V_ASN1_NEG) != itype) { + ASN1err(ASN1_F_ASN1_STRING_GET_INT64, ASN1_R_WRONG_INTEGER_TYPE); + return 0; + } + return asn1_get_int64(pr, a->data, a->length, a->type & V_ASN1_NEG); +} + +static int asn1_string_set_int64(ASN1_STRING *a, int64_t r, int itype) +{ + unsigned char tbuf[sizeof(r)]; + size_t off; + + a->type = itype; + if (r < 0) { + /* Most obvious '-r' triggers undefined behaviour for most + * common INT64_MIN. Even though below '0 - (uint64_t)r' can + * appear two's-complement centric, it does produce correct/ + * expected result even on one's-complement. This is because + * cast to unsigned has to change bit pattern... */ + off = asn1_put_uint64(tbuf, 0 - (uint64_t)r); + a->type |= V_ASN1_NEG; + } else { + off = asn1_put_uint64(tbuf, r); + a->type &= ~V_ASN1_NEG; + } + return ASN1_STRING_set(a, tbuf + off, sizeof(tbuf) - off); +} + +static int asn1_string_get_uint64(uint64_t *pr, const ASN1_STRING *a, + int itype) +{ + if (a == NULL) { + ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ERR_R_PASSED_NULL_PARAMETER); + return 0; + } + if ((a->type & ~V_ASN1_NEG) != itype) { + ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ASN1_R_WRONG_INTEGER_TYPE); + return 0; + } + if (a->type & V_ASN1_NEG) { + ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ASN1_R_ILLEGAL_NEGATIVE_VALUE); + return 0; + } + return asn1_get_uint64(pr, a->data, a->length); +} + +static int asn1_string_set_uint64(ASN1_STRING *a, uint64_t r, int itype) +{ + unsigned char tbuf[sizeof(r)]; + size_t off; + + a->type = itype; + off = asn1_put_uint64(tbuf, r); + return ASN1_STRING_set(a, tbuf + off, sizeof(tbuf) - off); } /* @@ -340,116 +446,185 @@ ASN1_INTEGER *d2i_ASN1_UINTEGER(ASN1_INTEGER **a, const unsigned char **pp, return (NULL); } -int ASN1_INTEGER_set(ASN1_INTEGER *a, long v) +static ASN1_STRING *bn_to_asn1_string(const BIGNUM *bn, ASN1_STRING *ai, + int atype) { - int j, k; - unsigned int i; - unsigned char buf[sizeof(long) + 1]; + ASN1_INTEGER *ret; + int len; - if (a->length < (int)(sizeof(long) + 1)) { - OPENSSL_free(a->data); - if ((a->data = OPENSSL_malloc(sizeof(long) + 1)) != NULL) - memset(a->data, 0, sizeof(long) + 1); + if (ai == NULL) { + ret = ASN1_STRING_type_new(atype); + } else { + ret = ai; + ret->type = atype; } - if (a->data == NULL) { - ASN1err(ASN1_F_ASN1_INTEGER_SET, ERR_R_MALLOC_FAILURE); - return (0); + + if (ret == NULL) { + ASN1err(ASN1_F_BN_TO_ASN1_STRING, ERR_R_NESTED_ASN1_ERROR); + goto err; } - if (v < 0) { - v = -v; - a->type = V_ASN1_NEG_INTEGER; - } else - a->type = V_ASN1_INTEGER; - for (i = 0; i < sizeof(long); i++) { - if (v == 0) - break; - buf[i] = (int)v & 0xff; - v >>= 8; + if (BN_is_negative(bn) && !BN_is_zero(bn)) + ret->type |= V_ASN1_NEG_INTEGER; + + len = BN_num_bytes(bn); + + if (len == 0) + len = 1; + + if (ASN1_STRING_set(ret, NULL, len) == 0) { + ASN1err(ASN1_F_BN_TO_ASN1_STRING, ERR_R_MALLOC_FAILURE); + goto err; + } + + /* Correct zero case */ + if (BN_is_zero(bn)) + ret->data[0] = 0; + else + len = BN_bn2bin(bn, ret->data); + ret->length = len; + return ret; + err: + if (ret != ai) + ASN1_INTEGER_free(ret); + return (NULL); +} + +static BIGNUM *asn1_string_to_bn(const ASN1_INTEGER *ai, BIGNUM *bn, + int itype) +{ + BIGNUM *ret; + + if ((ai->type & ~V_ASN1_NEG) != itype) { + ASN1err(ASN1_F_ASN1_STRING_TO_BN, ASN1_R_WRONG_INTEGER_TYPE); + return NULL; + } + + ret = BN_bin2bn(ai->data, ai->length, bn); + if (ret == NULL) { + ASN1err(ASN1_F_ASN1_STRING_TO_BN, ASN1_R_BN_LIB); + return NULL; } - j = 0; - for (k = i - 1; k >= 0; k--) - a->data[j++] = buf[k]; - a->length = j; - return (1); + if (ai->type & V_ASN1_NEG) + BN_set_negative(ret, 1); + return ret; } -long ASN1_INTEGER_get(const ASN1_INTEGER *a) +int ASN1_INTEGER_get_int64(int64_t *pr, const ASN1_INTEGER *a) { - int neg = 0, i; - long r = 0; + return asn1_string_get_int64(pr, a, V_ASN1_INTEGER); +} + +int ASN1_INTEGER_set_int64(ASN1_INTEGER *a, int64_t r) +{ + return asn1_string_set_int64(a, r, V_ASN1_INTEGER); +} + +int ASN1_INTEGER_get_uint64(uint64_t *pr, const ASN1_INTEGER *a) +{ + return asn1_string_get_uint64(pr, a, V_ASN1_INTEGER); +} + +int ASN1_INTEGER_set_uint64(ASN1_INTEGER *a, uint64_t r) +{ + return asn1_string_set_uint64(a, r, V_ASN1_INTEGER); +} + +int ASN1_INTEGER_set(ASN1_INTEGER *a, long v) +{ + return ASN1_INTEGER_set_int64(a, v); +} +long ASN1_INTEGER_get(const ASN1_INTEGER *a) +{ + int i; + int64_t r; if (a == NULL) - return (0L); - i = a->type; - if (i == V_ASN1_NEG_INTEGER) - neg = 1; - else if (i != V_ASN1_INTEGER) + return 0; + i = ASN1_INTEGER_get_int64(&r, a); + if (i == 0) return -1; - - if (a->length > (int)sizeof(long)) { - /* hmm... a bit ugly, return all ones */ + if (r > LONG_MAX || r < LONG_MIN) return -1; - } - if (a->data == NULL) + return (long)r; +} + +ASN1_INTEGER *BN_to_ASN1_INTEGER(const BIGNUM *bn, ASN1_INTEGER *ai) +{ + return bn_to_asn1_string(bn, ai, V_ASN1_INTEGER); +} + +BIGNUM *ASN1_INTEGER_to_BN(const ASN1_INTEGER *ai, BIGNUM *bn) +{ + return asn1_string_to_bn(ai, bn, V_ASN1_INTEGER); +} + +int ASN1_ENUMERATED_get_int64(int64_t *pr, const ASN1_ENUMERATED *a) +{ + return asn1_string_get_int64(pr, a, V_ASN1_ENUMERATED); +} + +int ASN1_ENUMERATED_set_int64(ASN1_ENUMERATED *a, int64_t r) +{ + return asn1_string_set_int64(a, r, V_ASN1_ENUMERATED); +} + +int ASN1_ENUMERATED_set(ASN1_ENUMERATED *a, long v) +{ + return ASN1_ENUMERATED_set_int64(a, v); +} + +long ASN1_ENUMERATED_get(const ASN1_ENUMERATED *a) +{ + int i; + int64_t r; + if (a == NULL) return 0; + if ((a->type & ~V_ASN1_NEG) != V_ASN1_ENUMERATED) + return -1; + if (a->length > (int)sizeof(long)) + return 0xffffffffL; + i = ASN1_ENUMERATED_get_int64(&r, a); + if (i == 0) + return -1; + if (r > LONG_MAX || r < LONG_MIN) + return -1; + return (long)r; +} - for (i = 0; i < a->length; i++) { - r <<= 8; - r |= (unsigned char)a->data[i]; - } - if (neg) - r = -r; - return (r); +ASN1_ENUMERATED *BN_to_ASN1_ENUMERATED(const BIGNUM *bn, ASN1_ENUMERATED *ai) +{ + return bn_to_asn1_string(bn, ai, V_ASN1_ENUMERATED); } -ASN1_INTEGER *BN_to_ASN1_INTEGER(const BIGNUM *bn, ASN1_INTEGER *ai) +BIGNUM *ASN1_ENUMERATED_to_BN(const ASN1_ENUMERATED *ai, BIGNUM *bn) { - ASN1_INTEGER *ret; - int len, j; + return asn1_string_to_bn(ai, bn, V_ASN1_ENUMERATED); +} - if (ai == NULL) - ret = ASN1_INTEGER_new(); - else - ret = ai; - if (ret == NULL) { - ASN1err(ASN1_F_BN_TO_ASN1_INTEGER, ERR_R_NESTED_ASN1_ERROR); - goto err; - } - if (BN_is_negative(bn) && !BN_is_zero(bn)) - ret->type = V_ASN1_NEG_INTEGER; - else - ret->type = V_ASN1_INTEGER; - j = BN_num_bits(bn); - len = ((j == 0) ? 0 : ((j / 8) + 1)); - if (ret->length < len + 4) { - unsigned char *new_data = OPENSSL_realloc(ret->data, len + 4); - if (!new_data) { - ASN1err(ASN1_F_BN_TO_ASN1_INTEGER, ERR_R_MALLOC_FAILURE); - goto err; - } - ret->data = new_data; - } - ret->length = BN_bn2bin(bn, ret->data); - /* Correct zero case */ - if (!ret->length) { - ret->data[0] = 0; - ret->length = 1; +/* Internal functions used by x_int64.c */ +int c2i_uint64_int(uint64_t *ret, int *neg, const unsigned char **pp, long len) +{ + unsigned char buf[sizeof(uint64_t)]; + size_t buflen; + + buflen = c2i_ibuf(NULL, NULL, *pp, len); + if (buflen == 0) + return 0; + if (buflen > sizeof(uint64_t)) { + ASN1err(ASN1_F_C2I_UINT64_INT, ASN1_R_TOO_LARGE); + return 0; } - return (ret); - err: - if (ret != ai) - ASN1_INTEGER_free(ret); - return (NULL); + (void)c2i_ibuf(buf, neg, *pp, len); + return asn1_get_uint64(ret, buf, buflen); } -BIGNUM *ASN1_INTEGER_to_BN(const ASN1_INTEGER *ai, BIGNUM *bn) +int i2c_uint64_int(unsigned char *p, uint64_t r, int neg) { - BIGNUM *ret; + unsigned char buf[sizeof(uint64_t)]; + size_t off; - if ((ret = BN_bin2bn(ai->data, ai->length, bn)) == NULL) - ASN1err(ASN1_F_ASN1_INTEGER_TO_BN, ASN1_R_BN_LIB); - else if (ai->type == V_ASN1_NEG_INTEGER) - BN_set_negative(ret, 1); - return (ret); + off = asn1_put_uint64(buf, r); + return i2c_ibuf(buf + off, sizeof(buf) - off, neg, &p); } +